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The simple equation derived previously for calculating the diffusion coefficient and the zero-time 
correction from the data of the polarization interferometer is shown to be valid not only in the 
case of binary systems but also for the diffusion of polymer solutes with moderately broad mole
cular weight distribution and results in a diffusion coefficient, which is an average value of a well
-defined type. In addition, it is shown experimentally that the equation is applicable with suf
ficient accuracy also to the evaluation of diffusion coefficients of polymers having a polydispersity 
index as high as M wi Mn = 2. 

A simple and precise method for calculating diffusion coefficients from the data of a polarization 
interferometer has been proposed previously! and it has been shown experimentally that the 
straight line equation derived for a bin~ry system is applicable also for "monodisperse" standard 
polymers. It should be pointed out that in general the polarization interferometer gives average 
values of the diffusion coefficient that range approximately from the number average to the 
weight average. Thus, for moderately broad fractions, the numerical values obtained may deviate 
considerably from the z-average values obtained from the Doppler-shifted light scattering techni
que. In order to make the calculation! una~biguously applicable also to free diffusion measure
ments on moderately polydisperse polymersolutes2 it was felt desirable to determine what type 
of average diffusion coefflcient3 one obtains. 

In the present paper it is shown that the previously derived linear relation! holds 
also in the case of moderately polydisperse solutes giving a well-defined average 
value of the diffusion coefficient. As a check the theoretical results have been tested 
experinientally and found applicable for a polymer having Mw/Mn ~ 2. 

THEORETICAL 

The polarization interferometer employed4
,5 compares the optical paths of two 

beams that pass through the diffusion cell separated by a small distance b which is 
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an instrumental constant. Assuming a proper adjustment of the optical system, the 
interference conditions are given by 

(1) 

where i1.n is the refractive index difference at the points in the cell where the two inter
fering beams pass, j is a number of the interference fringe, 1 is the cell thickness, 
A is the wave length of the light and dnjdx is the gradient of refractive index at the 
point x in the cell. In a free diffusion process the exact relationship between the 
difference quotient and the derivative in Eq. (1) is given by 5,6 

(
i1.n) = dn (1 + _1 _ ~ x2 

- 2Dt + ... ) 
i1.x ax=b dx 22 . 3! 2Dt 2Dt . 

as can be derived from the known equation for the refractive index gradient 

dn/dx = [i1.no/2(nDt)l/2] exp (-x2/4Dt) , 

(2) 

(3) 

where t is time, i1.no is the initial (t = 0) refractive index difference and D is the binary 
diffusion coefficient. In view of the bell-shaped form of the gradient (3) it is clear that 
the conditions (1) lead to the formation of pairs of interference fringes, the j-th 
pair corresponding to a given value of aj. Thus, each pair, represents points on the 
contour line of the gradient curve; the fringes of a given pair first move apart, then 
approach each other and finally disappear in the middle. The experimentally mea
sured quantity is the distance between the fringes of a given pair, (2xj)' as a function 
of time. 

In a previous paperl the following relationship was derived from Eqs (1)-(3) 

(4) 

where i1.tc = i1.t + b2/24D; i1.t is the zero-time correction resulting from the imperfect 
shape of the initial boundary and the term b2j24D stems from the second term of the 
expansion in Eq. (2). It can also be shown! that when the optical system is not pro
perly adjusted (so that aj+k/aj =l= U + k)fj), aj is given by 

(5) 

where e is the base of natural logarithms and (2xj )!ax is the maximum ordinate of the 
function (2Xj)2 = f(t). The equation obtained by inserting aj and aj+k from Eq. (5) 
reads 

(6) 
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where Aj,j+k = In [(2xJ~ax/(2xj+k)~ax]; the diffusion coefficient is obtained from the 
slope of the straight line (6) and fltc follows from the intercept. 

Consider now the diffusion of a polydisperse polymer characterized by the weight 
distribution of diffusion coefficients, g( D), defined in such a way that the product 
g( D) dD gives the weight fraction of the polymer with diffusion coefficients from the 
interval (D, D + dD). Moments about zero of the distribution g(D) are defined by 

p.; = f D'g(D) dD. (7) 

Previously we derived a general equation3 

(8) 

where the average diffusion coefficients, defined on the basis of the moments p,; as 
Dl = (P,~1/2)-2, D2 = P,~1/2/P,~3/2' D3 = P,~3/2/j1~5/2' are experimentally acces
sible3 and 92 = x 2 /4t. Rearranging one obtains 

a. ~ - = cpo 1 + J 
(

dn) [ z· ] 
J - dx j J exp ( - 9f/ D

2
) , 

(9) 

where the alternating series in (8) has been denoted by Zj and 

(10) 

Now, limiting the treatment to adjacent fringe pairs (k = 1), one can write 

(11) 

Taking logarithms, inserting from Eq. (10), rearranging and using the approximations 
(L + x)j(1 + y) ~ 1 + x -:- Y and In (1 + z) ~ Z, valid for small x, y, z, one gets 

(12) 
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For k = 1, this is clearly equivalent to Eq. (4) with Ate = 0, provided the difference 
of the last two terms in Eq. (12) can be neglected. In the following, this difference 
is denoted AU, j + 1); it thus follows that in the region of 8 where A (j, j + 1) can be 
neglected, the calculation according to Eq. (4) is valid and yields the average diffusion 

coefficient D2 = Jl.'-1/2!J1.'-3 /2' 

In the previous derivation 1 of Eq. (6) the first term of the expansion (2) has been 
included and resulted in a correction term in the definition of Ate. It can be shown by 
a re.Iatively simple algebra that in the range of 8 where a j == if>j (with Dl and D2 -

see Eq. (10)) the relation (2) remains valid. Thus, under the condition aj = if>j the 
derivation of Eq. (4) in the previous paperl remains unchanged including the value 
of fl.t, and it need not be repeated here. 

However, to proceed from Eq. (4) to Eq. (6) it is nec(ssary to show whether and 
in what range of 8 is it justified to set Aj ,j+l = ln (aj+daj)2 also for polydisperse 
samples. Eq. (10) can be rewritten in the form 

(13) 

which again describes the time dependence of the distance between fringes under the 
assumption aj == if>j. From the condition for the maximum of this function one ob
tains 

D2 2An~ 
--- (14) 

It is immediately apparent that aJ+l!aJ = (2xj )!ax!(2xj + 1)!ax, so that Eq. (6) origi
nally derived for binary diffusion remains valid also for the diffusion of polydisperse 
polymers with a moderately broad distribution of molecular weight, where one can 
neglect AU, j + 1) and make use of the approximation a j = if> j at least within a cer-
'tain range of 8; in this range the plot of experimental data according to Eq. (6) is 
linear. 

EXPERIMENTAL 

Standard polystyrene NBS 706 (NBS Certificate) was characterized by Mn = 136500, Ml1 = 

= 216000, Mw = 257800 (light scattering), Mw = 288 100 (sedimentation equilibrium). Toluene 
(reagent grade, Lachema Brno) was distilled on a column (1 500 mm, Bed's saddles). The instru
ment, thermostat, preparation of solutions, measuring procedure and the stainless steel diffusion 
cell have been described elsewhere 7 

- 9. Measurements were performed at 25°C against pure 
solvent; mean concentrations, co' were always lower than 4·5 . 10- 4 g cm - 3 so that the con
centration dependence of diffusion coefficients could be neglected2

. 
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TABLE I 

Diffusion coefficients of polystyrene NBS 706 in toluene at 25°C_ Symbols: D 1 , D2, D3 are 
average diffusion coefficients, Il.tc - zero-time correction, (2x)-distance between the fringes 
of a given pair, j-number of fringes 

General procedure3 Equation (6) 

j 
D2 . 1011 Il.tc Dl .1011 D3 . 1011 (2xj)~ax . 106 D2 _ 1011 Il.tc 
m2 s- 1 s m2 s- 1 m2 s- 1 m2 m2 s- 1 

Experiment A 

2 2-987 1 553 ..10·640 2.951 2096 
3 2-950 1454 4·642 2-867 1 899 
4 2-942 1 315 2·573 

Mean 2-959 1384 3.368 2-825 2-909 1 997 

Experiment B 

2 2.992 1 387 
3 2-954 1908 
4 2-972 1 091 

·Mean 2.973 1462 3.400 

1"8,------:--.----.-------:::;~----, 

7 

9-552 2.971 2193 
4·124 2.822 1632 
2·222 

2.886 2.896 1 912 

FIG. 1 

Quotients DJD2 plotted against Mw/Mn for 
polymer obeying the Schulz-Zimm distribu
tion function. 1 Dn/D2; 2 D 1 /D2; 3 Dw/D2 
4 Dz /D2 ; -- 0: = 0·5; --- - - 0: = 0·556 
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RESULTS AND DISCUSSION 

The necessity to define the type of average of the resulting diffusion coefficient even 
for polymer samples having a very narrow distribution is immediately apparent 
from Fig. 1, where the quotients D1/D2, Dn/D2' Dw/D2 and Dz/D2 (Dn = (.u~1)-1; 
Dw = .u~; Dz = .u;/.uD are plotted against the ratio Mw/Mn for two values of the 
exponent a in the equation D = KM-rt. (a = 0·5, E)-solvent; a = 0·556, a thermo
dynamically good solvent), assuming that the polymer obeys the Schulz-Zimm distribu
tion function. It should be noted here that it always holds3 Dl 2:: D2 2:: D3 2:: ••. ; 

from the picture it follows D2 ~ Dn ~ Dl and these three averages are quite close 
to each other. In addition, Fig. 1 also illustrates that the sensitivity of average diffusion 
coefficients to sample polydispersity increases somewhat with the thermodynamic 
quality of the solvent. 

In the previous paper the use of Eq. (6) in the case of the binary diffusion of low
-molecular weight solutes was described in detail together with the diffusion of narrow 
polystyrene standards (Mw/Mn < 1·02 and 1·08, respectively) in toluene, which 
according to Fig. 1 should have Dl/ D2 '" Dn/ D2 '" 1·01; all plots according to 
Eq. (6) were in these cases linear in the whole range9 t ~ Atc• From the present results 
it follows that the measured values of the diffusion coefficient did correspond to the 
D2 - average. 

FIG. 2 

Plots of 1Jj = fer) for three pairs of fringes 
in experiment A. 1Jc determined3 from the 
condition of 1 % error in Eq. (15); numbers 
are values of j . The value on axis »: 1Jj . 1010 
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FIG. 3 

Time dependence of (2Xj)2 - (2xj + 1)2 for 
three fringe pairs in experiment A • j = 3 
o j= 2. Axis y: (2Xj)2 - (2xj+l)2; x: t.1O- 4 
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In order to verify the range of validity of Eq. (6), i.e., the possibility of neglecting 
flU, j + 1) and the assumption a j = 1>j' the free diffusion of polystyrene NBS 706 
which has Mw/Mn '" 2 was measured. Results of two independent maesurements 
A and B are collected in Table I which summarizes also the values of Db Dz, D3 and 
fltc as obtained by the previously described general procedure3 valid for polydisperse 
systems. This method is also based on Eq. (9) and, assuming a j ~ 1>j leads to the limi
ting straight line 

(15) 

where to is the time unit employed and 1]j = 169f. The curvature of the plot 1" VS'1] 
is given by the term zj/exp ( - 9f I Dz) in relation (9),and E9. (15) is ,:alid in that range 
of 9j where this quotient can be neglected in comparison with unity. A graph of the 
dependence of1]c/Dz VS. D1/Dz (1]c is the maximum admissible value of 1], which cor
responds to accuracy of 1 or 2% when using the straight-line dependence according 
to Eq. (15)) can be found in3

• The averages Dz and Dl are obtained3 from the slope 
and intercept of the linear dependence 1]j = f(1"), D3 can be determined from a devia
tion graph also described in3 • As an example, Fig. 2 gives these dependences for three 
pairs of fringes from experiment A; the range of validity of Eq. (15) for a 1% error 
is indicated and the limiting straight line is drawn; the curvature of the plot is clearly 
seen. 

The same experimental data evaluated according to Eq. (6) are plotted in Fig. 3; 
it is seen that after a short time (comparable with the correction term dtc' so that 
the uncertainty in its determination can be neglected9

), both plots become linear. 
A comparison of Figs 2 and 3 also shows qualitatively the compensation of the 
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FIG. 4 

Calculation of the correction term in Eq. (11) 
for three pairs of fringes in experiment A. 
The series for Zj truncated after: -- 7 
terms, ....... 5 terms, ----- 3 terms, 
.... j = 2, 0 ... j = 3. The values of time 
are in t . 10 - 4 
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effect of polydispersity as indicated in Eq. (12). These conclusions have been verified 
by model calculations: from the data of experiment A the quantity 

which enters into Eq. (11) has been calculated; for small values of S they lead to 
I1(j, j + 1). As the alternating series that defines Zj converges slowly for higher S, it 
was truncated after the third, the fifth and the seventh term, respectively (the data 
of experiment A were used, i.e., D2/ D3 = 1'05, and for the higher averages it was 
assumed that D2/ D3 = D3/ D4 = ... ). The results are plotted in Fig. 4; the deviations 
rapidly drop below 2 and 1 percent, respectively. The extent of compensation of the 
effect of polydispersity is illustrated by some numerical values: at t = 6240 s (lOth 
exposure) the respective values of zj/exp ( - Sf! D2 ) are 0·0523,0'0238 and 0·0112 for 
j = 2, 3 and 4, respectively, so that the compensation amounts to some 50 percent. 
At the same time, these numbers illustrate that the approximation aj '" CPj is also 
valid with sufficient accuracy, since the correction for the replacement of the diffe
rence quotient by the derivative is a quantity of second order. With regard to Eq. (14) 
it is sufficient to note here that the S-values for which (2xjyare maximum fall for 
j = 2 to 5 into the region where Eq. (15) is fulfilled, so that the assumption aj I'V CPj 
is valid. 

Comparing from this point of view the resulting values of the average D2 as deter
mined from both experiments A and B according to Eq. (6) (last three columns in 
Table I) and, on the other hand, by means of the general procedure3

, it is clear that 
within the limits of experi~ental error (about 2 percent) the results are equivalent 
even for a polymer with Mw/Mn ~ 2 (i.e. Dl/D2 = 1·14), but Eq. (6) yields somewhat 
higher values of dtc' This difference is not surprising if one considers that in the rather 
complex general method3 the values of dtc are arrived at in a quite complicated man
ner. Summarizing, one can state that Eq. (6) with all its advantages previously men
tioned 1 can be applied with confidence also for evaluating data of free diffusion of 
common moderately broad polymer fractions. In this case the method yields the 
average D 2 , and the linearity of the plot is in itself a sufficient warranty of the appli
cability of the method. 
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